LPA-producing enzyme PA-PLA₁α regulates hair follicle development by modulating EGFR signalling.

نویسندگان

  • Asuka Inoue
  • Naoaki Arima
  • Jun Ishiguro
  • Glenn D Prestwich
  • Hiroyuki Arai
  • Junken Aoki
چکیده

Recent genetic studies of human hair disorders have suggested a critical role of lysophosphatidic acid (LPA) signalling in hair follicle development, mediated by an LPA-producing enzyme, phosphatidic acid-selective phospholipase A(1)α (PA-PLA(1)α, also known as LIPH), and a recently identified LPA receptor, P2Y5 (also known as LPA(6)). However, the underlying molecular mechanism is unknown. Here, we show that epidermal growth factor receptor (EGFR) signalling underlies LPA-induced hair follicle development. PA-PLA(1)α-deficient mice generated in this study exhibited wavy hairs due to the aberrant formation of the inner root sheath (IRS) in hair follicles, which resembled mutant mice defective in tumour necrosis factor α converting enzyme (TACE), transforming growth factor α (TGFα) and EGFR. PA-PLA(1)α was co-localized with TACE, TGFα and tyrosine-phosphorylated EGFR in the IRS. In PA-PLA(1)α-deficient hair follicles, cleaved TGFα and tyrosine-phosphorylated EGFR, as well as LPA, were significantly reduced. LPA, P2Y5 agonists and recombinant PA-PLA(1)α enzyme induced P2Y5- and TACE-mediated ectodomain shedding of TGFα through G12/13 pathway and consequent EGFR transactivation in vitro. These data demonstrate that a PA-PLA(1)α-LPA-P2Y5 axis regulates differentiation and maturation of hair follicles via a TACE-TGFα-EGFR pathway, thus underscoring the physiological importance of LPA-induced EGFR transactivation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LPA-producing enzyme PA-PLA1 regulates hair follicle development by modulating EGFR signaling

While referee #1 express some interest in the study, I am afraid that the other two referees are not persuaded that the analysis is well suited for publication here. Referee #2 finds that further definitive insight into the identity and regulation of the protease responsible for TGFalpha cleavage is needed. Referee #3 while appreciating that the findings extend previous work, s/he is also not p...

متن کامل

Enpp2/Autotaxin in Dermal Papilla Precursors is Dispensable for Hair Follicle Morphogenesis

Systematic ablation of previously identified dermal papilla (DP) signature genes in embryonic DP precursors will reveal their functional roles during hair follicle morphogenesis. In this study, we validate Enpp2/Autotaxin as one of the highest expressed signature genes in postnatal DP, and demonstrate specific expression of this lysophosphatidic acid (LPA)-generating enzyme in embryonic dermal ...

متن کامل

KGF and EGF signalling block hair follicle induction and promote interfollicular epidermal fate in developing mouse skin.

A key initial event in hair follicle morphogenesis is the localised thickening of the skin epithelium to form a placode, partitioning future hair follicle epithelium from interfollicular epidermis. Although many developmental signalling pathways are implicated in follicle morphogenesis, the role of epidermal growth factor (EGF) and keratinocyte growth factor (KGF, also known as FGF7) receptors ...

متن کامل

TNF-α and LPA promote synergistic expression of COX-2 in human colonic myofibroblasts: role of LPA-mediated transactivation of upregulated EGFR

BACKGROUND Enhanced EGF receptor (EGFR) signaling is a hallmark of many human cancers, though the role of enhanced EGFR signaling within the surrounding tumor stroma has not been well studied. The myofibroblast is an important stromal cell that demonstrates enhanced EGFR expression in the setting of inflammation, though the functional relevance is not known. We recently reported that TNF-α and ...

متن کامل

A crucial role for Fgfr2-IIIb signalling in epidermal development and hair follicle patterning.

To understand the role Fgf signalling in skin and hair follicle development, we analysed the phenotype of mice deficient for Fgfr2-IIIb and its main ligand Fgf10. These studies showed that the severe epidermal hypoplasia found in mice null for Fgfr2-IIIb is caused by a lack of the basal cell proliferation that normally results in a stratified epidermis. Although at term the epidermis of Fgfr2-I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 30 20  شماره 

صفحات  -

تاریخ انتشار 2011